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A SIR Epidemic Model for HIV/AIDS Infection 
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Abstract - In this article, we survey the stability analysis and the basic reproduction number ( )0R  that are significant concepts for the development of 

HIV/AIDS mathematical models. Furthermore, we developed a model to confirm the endemicity of the disease by using the basic reproduction number 

0R as a basis. 
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1. INTRODUCTION 
Human Immunodeficiency Virus (HIV) is a virus that attacks 
the immune system of human beings and renders it weak to 
infection. HIV can progress to Acquired Immune Deficiency 
Syndrome (AIDS) once the number of T-cells in the immune 
system have been significantly reduced (UNAIDS 2007). 
During the initial infection, a person may experience a brief 
period of influenza like illness. This is usually followed by a 
prolonged period without symptoms. As the illness progresses, 
it interferes more and more with the immune system thereby 
making the person much more likely to get infections such as 
opportunistic infections and tumor that do not usually affect 
people who have working immune systems. 
 
HIV infects vital cells in the human immune system such as 

the helper T cells specially ,4 cellsTCD + macrophages and 
dendritic cell (Cunningham A. Dinagby et al (2010)). HIV 

infection leads to low level of  cellsTCD +
4  through a 

number of mechanisms includes apoptosis of uninfected cells 
by stander cells direct viral killing of infected cells, and killing 

of infected cellsTCD +
4  by cellsTCD −8  cytotoxic 

limphocytes that recognizes infected cells. Garg H. Mhl. J. 
Joshi A. (2012), Kumar V (2012) leading to decline of 

cellsTCD −+
4  beyond a critical level which will lead to a 

lose of cell mediated immunity and the body becomes 
progressively more susceptible to opportunistic infections. 
 
HIV is transmitted primarily via unprotected sexual 
intercourse which may include anal or even oral sex, 
contaminated blood transfusions, hypodemic needles and from 
mother to child transmission during pregnancies delivery or 
breast feeding. (William N. R and Steven B. (2007)). Some 
bodily fluids such as saliva and tears do not transmit HIV 
(CDC (2003)). Prevention is primarily through safe sex and 
needle exchange program is a key strategy to control the 
spread of the disease. There is no known cure or vaccines for 
AIDS for now, however HAART can reduce or slow the 
course of the disease and may lead to normal life expectancy. 
Since it was first recognized in 1981 by Centre for Disease 
Control and Prevention (CDC), AIDS has caused over 34 
million deaths as of 2010 (CDC (2011)). As of 2010, 

approximately 36 million people are living with HIV/AIDS 
globally (UNAID (2010)). AIDS is now a global pandemic in 
the 21st century. 
 
Numerous deterministic and stochastic models since mid 
1980s have been developed to describe the immune system 
and its interaction with HIV. Stochastic models aims to 
account for the early events in the disease when there are few 
infected cells and small number of virus. Nowak et al (1996) 
investigated the effects of variability among vital strains, this 
and other works have been commented on critically by 
Stillianakis, N. I.  et al (1994). 
 
Most models appearing in literature have been deterministic in 
nature, such as Mclean and Nowak (1992), Frost and Mclean 
(1994), Kirschner and Webb (1997) and Wein et al (1998) 
models. These models try to reflect the dynamical change in 
mean cell populations. These models typically consider the 
dynamics of the 4CD  cells. Latertly inflected cells and virus 
population, as well as effects of drug therapy. 
 
In this article, we develop and analyze a SIR model to study 
the dynamics of HIV/AIDS infections within the human 
immune system by the considering the stability and the basics 
reproduction number. The immune system is a collection of 
cells and organs that work together synergistically. The T-cells 
are the subsets of white blood cells, which includes the 

cellsTCD +
4 (helper cells that signal when invaders enter) 

cellsTCD −8 (killer T-cells, which produce antibodies to 

kill invaders). The virus HIV target the cellsTCD +
4  not to 

send strong signal for the cellsTCD −8  to produce the 
antibodies. This cause immunodeficiency (stage of AIDS). 
 
2. MODEL FORMULATION 
We assume that the population are homogeneously mixed and 
the interaction within the population is a mass action type, 
cells once infected start producing virus. Furthermore, we 
ignore the latency period and there is a constant migration of 
susceptible into the population of size N (t) infected cells 
which produces same number of virus particles. 
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Let )(),( tytx  and )(tz  denote the number of susceptible, 
infectious and those that have developed acute AIDS (i.e 
AIDS patient). 
 
We assume a natural death throughout the population at the 
rate .µ   
 

The schematic diagram of the disease on which we base our 
model is as follows: 
 
 
 
π  represents the recruitment of susceptible into the 
population. The model is governed by the following system of 
non linear ordinary differential equations: 
 

xxyx µβπ −−=′   . . . (2.1) 
 

yyyxy µγβ −−=′    . . . (2.2) 
dzzyz −−=′ µγ    . . . (2.3) 

 
π  = Recruitment of susceptible into the population 
 
µ  = Natural death rate 
 
d  = Death rate of infected cells which also includes the 
possibility of death by busting of the cell, hence µ≥d  
 
β  = Rate at which susceptible becomes infected with the 
virus 
 
γ  = The rate at which infectious moves to full blown AIDS 
 
The total population at time t is given by 

).()()()( tztytxtN ++= Thus, 

 ( ) dzN
dt
dn

−−= µπ  

We note that in the absence of the disease and infectious, the 
total population size N is stationary for ;µπ = decline for 

µπ <  and grows exponentially for .µπ >  So we shall 
assume a mortality rate µ  that will be a function of state 
variable. Since the model is homogeneous of degree one, the 
variable can be normalized. 
 
Thus ,,, ZzYyXx ===  this leads to a normalized 
system; 
 ( ) ),,(,, zyxZYZ =  
 

0=−− xxy µβπ       
 . . . . (2.4) 
 

( ) 0=+− yxy µγβ       
 . . . . (2.5) 
 

( )0) =+− zdy µγ   . . . .  (2.6) 
 
where 1=++ zyx  and 

00)0(0)0(,0)( ≥∀>>> tzytx  
 
The continuity of equation (2.4) – (2.6) indicate that the model 
is well possed for .0>N  
 
3.  MODEL ANALYSIS 
 
3.1 Existence of disease - free equilibrium state .1E  
At the disease free equilibrium state, we have absence of 
infection. Thus, all the infected classes will be zero and the 
entire population will comprises of only susceptible 
individuals. 
 
Theorem 1: A disease free equilibrium state of the model exist 
at the point. 

( ) .0,0,,, ** 




=′ µ
πzyx  

 
Proof:  At equilibrium, the rate of change of each variable is 
equal to zero. 
 

i. e 0
000

===
dt

dz
dt

dy
dt

dx
   . . . . (3.1) 

from equation (2.5) 
( )[ ] 0* =+− µγβxy           . . . . (3.2) 

0* =⇒ y   or                         . . . . (3.3) 

( ) 0* =+− µγβx            . . . . (3.4) 
Substitute (3.3) in (2.6) 

0* =⇒ z             . . . . (3.5) 
Substitute (3.3) and (3.5) into (2.6) 

0)(
0***

=−⇒
=−−

x
xyx

µπ
µβπ

 

µ
π=*x    . . . . (3.6) 

( ) 




=

===⇒

∞∞∞ 0,0,,,

0*,0*,*

µ
π

µ
π

zyx

zyx
 

Hence the disease free-equilibrium state exist. 
 
3.2 Existence of Endemic Disease Equilibrium 

State 
At the endemic equilibrium state the disease is present. 
Therefore the susceptible, infectious and the removed classes 
are not anyway equal to zero. 
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Theorem II:  An endemic equilibrium state of the model exist 
at the points  
 

( ) ( ) ( )( ).,,,
22

δµµγβ
πβµµγ

µγβ
πβµµγ

β
µγ

++
++

+
+++

=zyx  

Proof: Since at the equilibrium state of the endemic case, the 
disease is present, then; 
 

( )000 ,,* zyx
dt
dR

dt
dI

dt
ds

===  

 
From equations (2.1), (2.2) and (2.3) we have, 
 

0=−− xxy µβπ       
 . . . . (3.7) 

( ) 0=+− yxy µγβ       
 . . . . (3.8) 

( ) 0=+− zy δµγ      
 . . . . (3.9) 
 
From (3.9) 

( )
( )zy

zy
δµγ

δµγ
+=⇒

=+− 0
 

    zy 






 +
=

γ
δµ

   . . . . (3.10) 

Substituting (3.10) in (3.7) we have 
( ) 0=−

+
− xzx µ

γ
δµβπ  . . . . (3.11) 

 
Substituting (3.10) in (3.8) 

( ) 0=






 +
+−⇒ zx

γ
δµµγβ  . . . . (3.12) 

 
From (3.12) 

( ) ( ) 0=+−++− zzxzzx δµγδβµµγβµ  

( ) ( ) 02 =+++−+ zzx µµδγδγµβδβµ  
( ) ( ) ( )[ ]

orz
xz

0
0

=⇒
=++−+⇒ γµδµδµβ

 

( ) ( ) ( )
( )( )

( )δµβ
γµδµ

γµδµδµβ

+
++

=⇒

=++−+

x

x 0
 

β
γµ +

=⇒ x      . . . (3.13) 

Substituting (3.13) in (3.7) 

( )

( )( )
( ) πβµµγβγβµ

µµγβγβµπβ

β
γµµβπ

−+=+⇒

=+++−⇒

=






 +
+−

2

2 0

0

y
y

y

 

 

( )µγβ
µµγπβ

+
−−

=
2

y  . . . . (3.14) 

 
From equation (3.10) 

δµ
γ
+

=
yz      

 . . . . (3.15) 
Substituting from (3.14) 

( )
δµ

γ
µγβ
µµγπβγ

+









+
−−

=
2

z
 

 

( ) ( )δµµγβ
µµγπβ
++

−−
=⇒

2

z . . . . (3.16) 

 
Therefore at the endemic state, we have 

 ( )

( ) ( )













++
++

=

+
++

=

+
=

δµµγβ
πβµµγ

µγβ
πβµµγ

β
µγ

2

2

z

y

x

. . . . (3.17) 

 
which indicates that the disease is endemic in the population, 
the susceptible, infection and the removed cases are seriously 
affected. 
 
 
 
3. Effective Basic Reproduction Number 0R  
The basic reproduction number represent the average number 
of secondary cases generated by an infected individual if 
introduced into the susceptible population with no immunity 
to the disease in the absence of intervention to control the 
infections. 
 
If 0R  is less than 1, the infected individual produces less than 
are newly infected individual over the course of the infection 
period, therefore the disease will dies out at along run. 
Conversely if 10 >R  each infected individual produces an 
average more than one new infection, the infection will be 
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able to spread in a population. A large value of 0R  indicate 
that the disease can turn to an epidemic case over long run. 
Heesterbeek and Dietz (1996) using the technique introduced 
by Dickman and Heesterbeek (2000) and subsequently 
proofed by Vanden and Watmough (2005). We obtained the 
basic reproduction number 0R  of the our models which is the 

spectral radius ( )  of the next generation matrix .K  
 

kR =0  

where  1−= FVk  
( )1

0
−= FvR   









=









=









=

−

2

1

0
0

0
00

00
0

k
k

V

V

F x

γ

β

 

based on the equations in the SIR model analyzed above 









=









=

∪−=

−

+−

1

2

21

1

2

01

0

k
k

kk
V

k
k

V

VV

γ

γ
 

  

 



















=

221

1

1

01

kkk

k
γ

 . . . . (3.18) 



























=−

221

11

1

01

00
0

kkk

k
FV x

γ
β

 

 
















=

00

0
1k
xβ

      

  . . . . (3.19) 
We now seek for the highest dominant eigen values 

( )
















−
=−

λ

β

0

01 k
x

Fv   . . . . (3.20) 

( ) 0=





 −⇒ λλβ

k
x

 

0=⇒ λ     . . . . (3.21) 

or 
k
xβλ =    . . . . (3.22) 

since the value of ,µ
π=x  this implies that 

 0
1

R
k

=
µ
βπ

     

  . . . . (3.23) 

0R  is the basic reproduction number 
 
4. Local Stability of Disease Free Equilibrium (DFE) State 
From equation (3.7), (3.8) and (3.9), we have the Jacobian 
matrix 
 

 ( )
















+
+−

−−

δµγ
µγββ

βµβ

0
0
0

xy
xy

.(3.24) 

For local stability of DFE state, we have 

( ) ( ) 




== 0,0,0,0,**,*, µ
πµzyx  linearization 

of the equation, gives the Jacobian matrix 
 

 
( ) ( )

( )
























+−

+−

−

=

δµγ

µγ
µ
βπ
µ
βπµ

0

00

0,

xEJ
. . (3.25) 

we set 1k=+ µγ  and 2k=+δµ  without loss of 
generality we have 
 

( )

























−

−

−
−

=

2

1

0

00

0

k

kEJ x

γ
µ
βπ
µ
βπµ

(3.26) 
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( ) ( ) 0)(

0

00

0

32211

32

21

1

=−−







−−−−=

−−

−−

−
−−

=

λλ
µ
βπλµ

λγ

λ
µ
βπ
µ
βπλµ

kkEJ

k

k

x

 

If 00 11 <−=⇒=−− µλλµ  
 
If 00 2323 <−=⇒=− kk λλ  

and if 1221 kk −=⇒−−
µ
βπλλ

µ
βπ

 

for 2λ  to be less than zero 

01 <−⇒ k
µ
βπ

 

1k<⇒
µ
βπ

   . . . . (3.27) 

 

1

1

1 k
k

k
<µ

βπ

 

0,1 3
1

<<⇒ λ
µ

βπ
k

, where 
µ

βπ

1
0 k

R =  

 
This indicates that the DFE is locally asymptotically stable if 

...1
1

<
kµ
βπ

 

1
01

<
= Rkµ
βπ

 then DFE is locally asymptotically stable. 

 
Theorem (III): The disease free equilibrium *E   of the model 

is locally asymptotically stable (LAS) if .10 <R   
Prof: see e. g Kumour (2012) 
 
 
 
(3.5) Local Stability of Endemic Equilibrium State 
 
From the linearization of our model used above, we have the 
Jacobian matrix as 
  

 

( )
( )

( )















+−
+−

−+−

δµγ
µγββ

βµβ

0
0
0

xy
xy

  

 

( )
( )

( )
( ) 3

2

1

88

0
0
0

λδµγ
λµββ

βλµβ

−+−
−+−

−−+−
= rxy

xy
EJ  

 
we set 

 

( )
( )

( ) C
Bx

Ay

=+
=+−

=+

δµ
µγβ

µβ
 

 
without loss of generality, therefore 

0
0

0
0

=
−−

−−
−−−

λγ
λββ

βλ

c
y

xA

 

( )
( )

( )3

2

1

0
0
0

λγ
λββ

βλ

+−
+−

−+−

C
y

xA
 

 
( ) ( ) ( ){ } ( ) 03321 =+−+++ λββλλλ CCBA yx  

( ) ( )
02

32231

=−−
++++⇒

λββββ
λλλλλ

yxyx C
CBBCA

 

 
We set λλλλ === 321  

( ) ( )
03

22

=+++

++++++

λββββλ

λλλλ

yxyx C
CBBCACBAABC

 

( ) ( )
0

23

=++
+++++++

CABC
BCACABCBA

YX

YX

ββ
λββλλ

 

   . . . . (3.28) 
 
From equation (3.28) we discovered that 0>λ  indicating 
that 0,0,0 321 >>> λλλ  which indicates the disease is 
endemic in the population. 
Conclusion 
 From our investigation, we observed that the disease free 
equilibrium (DFE) is locally asymptotically stable for our 
model when the basic reproduction number of 0R  is 10 <R  

and when 10 >R  the disease will be endemic. 
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